If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.02w^2-0.3w-20=0
a = 0.02; b = -0.3; c = -20;
Δ = b2-4ac
Δ = -0.32-4·0.02·(-20)
Δ = 1.69
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.3)-\sqrt{1.69}}{2*0.02}=\frac{0.3-\sqrt{1.69}}{0.04} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.3)+\sqrt{1.69}}{2*0.02}=\frac{0.3+\sqrt{1.69}}{0.04} $
| -1/2(x+5)=10 | | 4(3 | | b+2=52 | | 8x+6=10x+6 | | k-(-3)=99 | | x-3+4x-6=180 | | 12a=5 | | x=60° | | X-27=9y | | 1.5z+4=2.2z+7.5 | | 24/15=32/n | | |10-n|=2 | | 2/5f+11=-19 | | 4(2-x)=3x+4(5x+2) | | –7−7g=5−9g | | –6r+8=5−6r | | –6j+4=–6j | | 19x-1+16×+6+145=180 | | 13n-2n-6n=10 | | -10n+8n-6n=8 | | Y^2=x^2+576 | | 2g-g+2=12 | | -2n+11n+(-19n)=20 | | (-79)=(7x)-(-9) | | 2q+q+5q-6q=4 | | -6z+11z-(-9z)=14 | | (2x)/5=14/7 | | 19k+k+k-11k-5k=20 | | (2x)/5=14/17 | | 2x/5=14/17 | | 2x/7=14/17 | | 6(3+4x)-3=159 |